Evangelism Marketing Workshop

April 17, 2008 · Posted in innovation, strategy · Comment 

The Boardwalk Creative Center in Ann Arbor, MI, “Michigan’s most creative meeting space” will host my next hands-on Evangelism Marketing Workshop. I’ll show you how to “Make your customers so happy they freely sell your products for you.” This is way beyond Word-Of-Mouth and Viral. The methods I teach will show you how to create, motivate, and track loyal fans who spread the word of your product.

As customers have more choices and control over media and products traditional interrupt based advertising is losing its effectiveness. Many companies are turning to online marketing, but going about it all wrong. They still try to force you to see their ads with pop-ups or spam or banner ads. Search-based techniques are better but depend on your customers knowing you exist and looking for you. How do you reach people with something new and better?

Evangelism Marketing is the answer. People are much more likely to buy a product recommended from a trusted friend. You might even ask certain friends for recommendations on things they have expertise. This bridges the knowledge and confidence gap. Additionally, Evangelism Marketing costs less because you aren’t fighting to get attention with offers that are thrown in the trash. The friend tell the potential customer what they want to hear, when they want to hear it in the way they want to hear it. Evangelism Marketing targets on levels not possible with any other approach and get better results because of it.

As you can imagine all the rules are different when using Evangelism Marketing. Using the OutCompete Predictive Innovation Method and 10 years of research, I’ve learned what makes a complete and effective Evangelism Marketing campaign. Get up and running fast with this action-packed one day workshop. I hope to see you there.

Find out more about Evangelism Marketing Workshop

Innovation Workshop at Washtenaw Community College

October 11, 2007 · Posted in innovation, problem solving · Comment 

Oct 18, 6 pm Washtenaw Community College at Towsley Auditorium I and 2 other international experts on Innovation will be presenting a free workshop, courtesy of the Student Enterprise Zone Club. If you can attend I highly recommend it.

I will be joined by David M. Verduyn, President, C2C Solutions Inc. and Len Kaplan, Managing Partner of OutCompete. Both of these gentlemen have over 20 years of success helping wide range of companies from startups to Fortune 500s innovate.

Learn how to:

  • Turn your idea into real-world business opportunity
  • Reveal target customers real needs and how to deliver it
  • Solve the “unsolvable” problems preventing your business from achieving success and growth
  • Dramatically reduce costs and effort of competing and increase your profitability
  • Turn your customers into an enthusiastic, efficient and inexpensive sales force.

I will be speaking on Evangelism Marketing. Len Kaplan will be talking about Turning ideas into real business success. And David Verduyn will be teaching systematic innovation methods. This is a hands-on workshop. And a DVD of the entire event will be available for a donation to the Student Enterprise Zone Club.

Download the PDF flyer How to Innovate for Business Success Flyer

Miracle of Water, Key to Innovation

December 12, 2006 · Posted in innovation · Comment 

Water is one of the weird things in nature. It doesn’t seem to follow the rules that other materials follow. One of the essential skills to being innovative is finding and understanding odd cases. The better you are at seeing the things that don’t fit the established rules the better you will be able to innovate. Innovation is simply discovering a more accurate view of the truth and implementing your discovery.

The weird behavior of water suggests to me that other rules are in play. If we can uncover what is really going on we will make a ton of new discoveries.

I had planned on writing my own article about water but the same day I received the following article in one of the many newsletter to which I subscribe. Since its states the case for water being unusual so well I figured I’d just pass it along.

The winter months are rapidly approaching. In cities and towns across the nation temperatures have begun to drop. Here in North Idaho, a blanket of freshly fallen snow has enveloped Koinonia House. Like the staff here at K-House, many of you will have the opportunity to enjoy the poetry and beauty – and the needed respites – of the ice and snow of this special season.

Have you ever noticed that ice floats? Why?

Virtually every material substance contracts when it cools. As it gets warmer, the molecules increase their vibrational energy and require more room: the substance therefore expands as it warms. And, conversely, it contracts as it cools. Materials decrease in volume as they get colder. Water is the astonishing exception. It expands when it freezes into a solid. Why does water violate this general rule? Why does water expand when freezing?

The water molecule is a (not-so-simple) combination of two atoms of hydrogen bonded to one of oxygen. Yet this particular combination possesses an amazing array of unique characteristics that distinguish it from any other material known!

The Freezing Process

Although almost all materials decrease in volume as they get colder, water has an astonishing characteristic. As it drops toward its freezing point of 0oC (32o F), its volume also reduces until it reaches 4oC, after which it actually increases. In a pond or lake, for example, this “inverse convection” has the salutary effect of bringing oxygen dissolved at the surface down to the lower depths for use by fish and other organisms. This process continues until the entire area has reached 4oC. As the water cools below this temperature, it dramatically increases in volume, making it lighter than the water below. This ultimately causes the top layer to freeze, which then actually acts as an insulation layer against the very low temperature of the air above. If water did not have this strange property, the entire pond or lake would freeze solid and fish and other living creatures would be killed.

This expansion can have disastrous effects on uninsulated water pipes in winter. However, this expansion effect has essential functions in nature. The rain or dew penetrates the soil, and when it freezes, the soil is shattered into small particles, breaking up the hard earth into suitable conditions in which seeds can germinate.

Why This Exceptional Behavior?

This strange behavior derives from the unusual bonding relationship between the two hydrogen atoms and the one oxygen atom that make up a molecule of water, H2O. The oxygen atom strongly attracts the single electrons of the two hydrogen atoms, leaving the two positively charged hydrogen nuclei rather free to attract other negative atoms. This attracts the oxygen molecules in other water molecules to form rather large, but loosely coupled, frameworks.

These atoms are not in a straight line, however, and the hydrogen atoms are bent toward each other, forming an asymmetrical three-dimensional structure. The angle formed between the two hydrogen and the central oxygen atom is 104.5o, almost precisely that of a hexagonal tetrahedron shape (109.5o), so it can take up this shape (slightly warped three-dimensionally) with little stress on the bonds. Opposite the hydrogen atoms, the clouds of resulting negative electrification attract the hydrogen nucleus of an adjacent water molecule to form what is called a hydrogen bond – the key to water’s peculiar behavior.

These tenacious hydrogen bond frameworks give water many astonishing characteristics, including anomalously high values for viscosity, surface tension, and the temperature and heats of melting and boiling. This results in its ubiquitous role as a solvent, its remarkable thermal properties, its surface tension and capillary action, and virtually innumerable chemical properties that are essential for life.

One would expect that these unique properties would make it a very rare molecule, produced only with great difficulty under laboratory conditions. The reality is, of course, quite the opposite: it is the most prevalent material on the planet, covering three-fourths of its surface, diffused extensively in the atmosphere, and – to the surprise of geologists – also found at astonishing depths in the earth. That such a unique substance should be in such abundance is in contradiction to any expectation of random chance alone.

Snow

Water vapor is a clear gas, which, as it cools under normal conditions, condenses and forms into water droplets. At high altitudes, water vapor can cool to below freezing, but in the absence of an impurity such as dust, around which it can collect, it will remain in this state.

When ice crystals form, the molecules of water arrange themselves in a specific pattern that is determined by the tetrahedral shape of the molecule in the frozen state described above. As further molecules join those already frozen, they give up their high latent heat of freezing, and melt the adjacent molecules, which reform to a shape dependent upon the local conditions of air temperature, wind currents, humidity, etc. Each snowflake pattern is unique to itself, but is always based upon the hexagonal bonding pattern of the ice crystals familiar to us all.

Snow also has a constructive role in the ecological cycle. It filters dust out of the air, absorbs nitrogen which then enters the soil, and acts as an insulating blanket to the plants and roots in the ground. The difference in temperature between the air and the ground covered by two feet of snow can be as much as 40oC.

When snow melts, it requires considerable heat to affect this, and therefore melts slowly, lowering the rate of melt water and reducing the flooding that could occur if the latent heat of freezing were lower.

In addition to all these unique properties, snow also has the added ability of reflecting all the colors of the spectrum to yield pure white. Is no wonder that we often find ourselves in awe of the sheer beauty of a layer of freshly fallen snow. May the tell-tale signs of winter throughout the coming months serve to remind you of the wonderful works of our Lord.

If one very simply thing like water can be so amazing, just think about how many innovations and new understandings are possible if you are willing to look with an open mind.

Action Items

  • List three (3) things that break the accepted rules. These can be physical items, behaviors, anything.
  • List the basic assumptions that go into making the rule.
  • List some things that were previously thought to be impossible that would become possible if that assumption was changed.
  • List some changes you would like to see happen that would occur if a basic assumption was changed. Choose any assumption personal, scientific, popular, anything.

« Previous PageNext Page »